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Abstract 

Cancer is a complex genetic disease with reduced treatment alternatives due to tumor heterogeneity and 
drug multiresistance emergence. The sphingolipid (SL) metabolic pathway integrates different responses 
of cellular stress signals and defines cell survival. Therefore, we suggest studying the perturbations on 
the sphingolipid pathway (SLP) caused by chemotherapeutic drugs using a systems biology approach to 
evaluate its functionality as a drug response sensor. We used a sphingomyelin-BODIPY (SM-BOD) sensor 
to study SL metabolism by flow cytometry and live cell imaging in different cancer models. To decode 
pathway complexity, we implemented Gussian mixture models, ordinary differential equations models, 
unsupervised classification algorithms and a fuzzy logic approach to assess its utility as a chemotherapy 
response sensor. Our results show that chemotherapeutic drugs perturb the SLP in different ways in a cell 
line-specific manner. In addition, we found that few SM-BOD fluorescence features predict chemosensitivity 
with high accuracy. Finally, we found that the relative species composition of SL appears to contribute to the 
resulting cytotoxicity of many treatments. This report offers a conceptual and mathematical framework for 
developing personalized mathematical models to predict and improve cancer therapy.
Keywords: cancer; tumor chemosensitivity; sphingolipids; systems biology; chemotherapy; fuzzy logic.
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Resumen 

El cáncer es una enfermedad genética compleja con opciones terapéuticas limitadas, debido a la 
heterogeneidad tumoral y a la aparición de multirresistencia a los fármacos. La vía metabólica de los 
esfingolípidos (SL) se caracteriza por ser capaz de integrar diferentes tipos de señales de estrés celular y definir 
la supervivencia celular. Por lo tanto, sugerimos estudiar las perturbaciones en la vía de los esfingolípidos 
(SLP) causadas por fármacos quimioterapéuticos utilizando un enfoque de biología de sistemas y evaluar 
su funcionalidad como sensor de respuesta a fármacos. Usamos un sensor de esfingomielina-BODIPY (SM-
BOD) para estudiar el metabolismo de SL mediante citometría de flujo e imágenes de células vivas en 
diferentes modelos de cáncer. Para decodificar la complejidad de la ruta, implementamos modelos de mezcla 
gaussianos, modelos de ecuaciones diferenciales ordinarias, algoritmos de clasificación no supervisados  y 
un modelo de lógica difusa para evaluar su utilidad como sensor de respuesta a la quimioterapia. Nuestros 
resultados muestran que los fármacos quimioterapéuticos perturban la SLP de diferentes formas y de una 
manera específica de la línea celular. Además, encontramos que pocas características de fluorescencia de 
SM-BOD predicen la quimiosensibilidad con alta precisión. Finalmente, encontramos que la composición 
relativa de especies de SL parece contribuir a la citotoxicidad resultante de muchos tratamientos. Este 
informe ofrece un marco conceptual y matemático para desarrollar modelos matemáticos personalizados 
para predecir y mejorar la terapia del cáncer.
Palabras clave: Cáncer; quimiosensibilidad tumoral; esfingolípidos; biología de sistemas; quimioterapia; 
lógica difusa.

Resumo 

O câncer é uma doença genética complexa com opções terapêuticas limitadas, devido à heterogeneidade 
tumoral e ao aparecimento de multirresistência aos fármacos. A via metabólica dos esfingolipídeos (SP) é 
caracterizada por ser capaz de integrar diferentes tipos de sinais de estresse celular e definir a sobrevivência 
celular. Portanto, sugerimos estudar as perturbações na rota dos esfingolipídeos (SP) causadas por 
fármacos quimioterápicos usando uma abordagem de biologia de sistemas e avaliar sua funcionalidade 
como sensor de resposta a fármacos. Usamos um sensor de esfingomielina-BODIPY (SM-BOD) para estudar 
o metabolismo do SP por citometria de fluxo e imagens de células vivas em diferentes modelos de câncer. 
Para decodificar a complexidade do caminho, implementamos modelos de mistura gaussiana, modelos de
equações diferenciais ordinárias, algoritmos de classificação não supervisionados  e um modelo de lógica
difusa para avaliar sua utilidade como sensor de resposta à quimioterapia. Nossos resultados mostram que
os fármacos quimioterápicos perturbam a rota dos SP de diferentes maneiras e de maneira específica da
linhagem celular. Além disso, descobrimos que poucas características de fluorescência do SM-BOD predizem
a quimiossensibilidade com alta precisão. Finalmente, descobrimos que a composição relativa de espécies
de SP parece contribuir para a citotoxicidade resultante de muitos tratamentos. Este relatório oferece uma
estrutura conceitual e matemática para o desenvolvimento de modelos matemáticos personalizados para
prever e melhorar a terapia do câncer.
Palavras-chave: Câncer; quimiossensibilidade do tumor; esfingolipídeos; biologia de sistemas; 
quimioterapia; lógica difusa.
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Kandyba, Kozlov & Somova, 2001; Kroll, 
Cho & Kang, 2020; Ogretmen, 2006). In 
order to predict chemotherapy response 
and infer how drugs disturb the SLP, we 
propose to evaluate SL dynamics in single 
cells using fluorescent sphingolipid ana-
logues as a biosensor.

Notwithstanding the fact that the SLP 
has been extensively studied in SL transport 
and metabolism (Iessi et al., 2020; Singh, 
Marks & Pagano, 2007), the effects of the 
perturbations on the SL signaling pathway 
and the sphingolipid rheostat mechanisms 
remain unclear. Thus, the connections be-
tween chemotherapy and cell fate should 
be considered for the comprehension of the 
SLP complexity.

In this context, we have studied the 
complexity of the SL metabolic pathway 
and its relationship with cell viability us-
ing different approaches associated to 
mathematical models, cancer cell lines and 
perturbations. Our previous work was fo-
cused on the study of a BODIPY-FL fluo-
rescent-sphingomyelin analog (SM-BOD) 
to decode the effect of known perturba-
tions in SL-metabolism in a cancer cell 
line (Mora et al., 2010).

We have established three approaches 
to evaluate the hypothesis of the use of the 
SLP as a predictor of tumor chemosensitiv-
ity using cell lines of three different types 
of cancer. The development of those ap-
proaches has been achieved with three ma-
jor mathematical models and complement-
ed with two machine learning strategies 
(with regards to dimensionality reduction 
and classification).

First, the complexity of the SLP is 
related to the multiple inputs and outputs 
and it is regulated spatially, therefore we 
developed a systems approach to decon-
volve SLP complexity and determine the 

Introduction

Cancer refers to a group of diseases 
characterized by uncontrolled cell growth 
(Fernandis & Wenk, 2009; Kenchegowda et 
al., 2022). The intratumoral heterogeneity 
promotes cancer genomic instability due to 
variability in drug resistance pattern at the 
single cells level which ensures tumor ro-
bustness (Lukow & Sheltzer, 2021; Kitano, 
2004). To address this level of complexity, 
is necessary to identify biosensors able to 
report chemosensitivity with single cell res-
olution (Barteneva, Fasler-Kan, & Vorob-
jev, 2012; Chuan Yang, Caibo Yang, Yosef 
Yarden, K.W.To & Liwu Fu, 2021).

The sphingolipid pathway (SLP) has 
a significant role in sensing the activity of 
different chemotherapeutic agents which 
could afford to overcome drug resistance 
(Dupre et al., 2017; Ogretmen, 2017; Van 
Meer, Wolthoorn & Degroote, 2003), thus, 
we suggest to study the behavior of this sig-
naling pathway as sensor of cellular stress 
induced by chemotherapeutic treatments.

The SLP is a complex biological sys-
tem integrating different responses of cell 
stress and kinetic phenotypes in order to 
induce death of cells (Molina-Mora et al., 
2018; Morales, Lee, Goñi, Kolesnick & Fer-
nandez-Checa, 2007). The balance within 
sphingolipids (SL) determines cell fate (Iessi 
et al., 2020; Tepper et al., 2000). Concentra-
tion ratios among ceramide, sphingosine and 
sphingosine-1-phosphate, which are convert-
ible metabolites, are determinant in defining 
cell fate. The balance between pro-death and 
pro-survival metabolites is termed sphingo-
lipid rheostat (Mora et al., 2010).

In this way, previous studies indicate 
that understanding SL dynamics allows the 
manipulation of cell fate for improving the 
response to chemotherapy (Dyatlovitskaya, 
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differences associated to drug resistance. 
Thus, cells were exposed to SM-BOD and 
we assessed the kinetic changes in total cell 
fluorescence using imaging flow cytometry 
or fluorescent microscopy and an ordinary 
differential equation (ODE) model.

Second, with the aim of characteriz-
ing the heterogeneous response to perturba-
tions, we implemented a Gaussian mixture 
model (GMM). This approach allowed to 
identify cell subpopulations based on differ-
ent drugs sensitivities and patterns of het-
erogeneity signals (Singh et al., 2010).

Third, we implemented a fuzzy logic 
model (FLM) to relate SL composition and 
cell viability using fuzzy rules.

With our mathematical models, we 
have evaluated three cell lines of three dif-
ferent types of cancer.

Pancreatic cancer: previous studies 
reported that differences between gemcit-
abine (GMZ) resistant and sensitive cell 
lines were dependent on the SLP (Guiller-
met-Guibert et al., 2009; Mora-Rodriguez 
& Molina-Mora, 2017). ODE and GMM re-
sults demonstrate that fluorescent SM-BOD 
can present changes according to the sen-
sitivity profile to chemotherapy in cancer 
cells and validate the pathway dynamics at 
the subpopulation level.

Breast cancer: we implemented two 
machine learning analyses to identify fea-
tures related to SM-BOD metabolism as 
predictor of chemosensitivity in the MCF-
7 human breast cancer cell line. SM-BOD 
was then tracked over time to monitor flu-
orescence intensity and features with single 
cell resolution. Also, we tested chemother-
apeutic drugs in the same cell line. Using 
a feature selection algorithm, the system 
complexity was reduced to less than 10% of 
features. To implement a classification anal-
ysis for recognizing sensitivity or resistant 

conditions, features were also evaluated 
with a decision tree algorithm. ODE and 
GMM were implemented to analyze the 
type of sensor response in this cell line.

Leukemia: we identified different pat-
terns of chemosensitivity using a leukemia 
cell line. Double perturbations were tested 
using chemotherapy combinations, making 
possible the identification of semi-quantita-
tive patterns between SL composition and 
cell fate.

Taken together, these approaches 
suggest a potential application of fluores-
cent SL analogues as biosensors of per-
turbation-response patterns to perform in 
vitro chemosensitivity assays capable of 
considering tumor heterogeneity to quanti-
fy the signaling dynamics of this pathway 
to overcome drug resistance.

Methodology

2.1 Cell culture, SM-BOD metabo-
lism and cell viability assay

In order to evaluate SL composition 
and its relationship to chemosensitivi-
ty, three cancer cell lines were used: pan-
creatic cancer (a sensitive cell line called 
BxPC-3, and two resistant cell lines called 
MIAPaCa-2 and PANC-1), MCF-7 breast 
cancer and CCRF-CEM leukemic cell lines.

Cell lines were cultured in RPMI me-
dium (for leukemic cell line) or DMEM 
(others) containing 10% of fetal bovine se-
rum and under standard conditions in 96-
well plates. The general strategy implied 
that cells were treated with a SM-BOD flu-
orescent probe analogous to sphingomyelin, 
which was incorporated into the metabolism 
by the respective cellular machinery, and 
then exposed to chemotherapies. In the 96 
well plates, culture medium was removed 
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machine learning algorithms and mathemat-
ical models.

To evaluate chemosensitivity, cell vi-
ability and cell death assays were performed 
using Hoechst 33342 and propidium iodide 
(PI) stain assays. In 96 well plates, cells were 
grown and incubated for 24h. Subsequent-
ly, upon completion of incubation time, 
propidium iodide (PI) and Hoechst 33342 
stains were added. Images were captured in 
the red (PI, dead cells) and blue (Hoescht 
33342, all nuclei of all cells) channels of the 
fluorescence microscope. Cell viability was 
determined by the number of living cells for 
each condition with respect to the number 
of alive cells of the untreated control. Each 
condition was evaluated in triplicate. More 
details of the experimental conditions are 
presented in (Erlich et al., 1999; Lippert et 
al., 2008; Solomonov et al., 2014).

2.2 Machine learning algorithms

We implemented a classification 
analysis to assess the predictive value of 
different features in each cell after expo-
sure to SM-BOD. C4.5 (J48) decision tree 
algorithm was implemented. Evaluation in-
cluded analysis of subsets of features which 
were selected by a support-vector machine 
(SVM) algorithm to reduce dimensionality.

On the other hand, image analysis 
data obtained from flow cytometry and flu-
orescence microscopy were subjected to 
GMM analysis to identify heterogeneity 
profiles and identify equivalences between 
chemotherapies and inhibitors. See details 
in (Solomonov et al., 2014). The validation 
of the performance was based on the ability 
of the algorithms to keep the control condi-
tions in a same cluster.

and replaced with medium containing the 
respective chemotherapeutic agents, as de-
tailed for each cell line.

In the case of the pancreatic cancer cell 
lines, assays were done with different con-
centrations of gemcitabine (GMZ). For the 
other cell lines, the employed concentrations 
were according to (Glaysher & Cree, 2011). 
For the breast cancer cell line, the selected 
chemotherapies were: vincristine (Vin), pa-
clitaxel (Pac), gemcitabine (GMZ), cisplatin 
(Cis), etoposide (Eto), methotrexate (Met), 
5-fluorouracil (5-fl), epirubicin (Epi) and
mafosfamide (Maf). Combinations of these
chemotherapeutic drugs were used in the
treatment of breast cancer. For the leukemic
cell line, the same drugs were evaluated but
also included temozolomide (Tem).

The same cell lines from the previous 
section were used to evaluate the metabo-
lism of the SM-BODIPY sensor (sphingo-
myelin analogue, SM-BOD). SL inhibi-
tors and chemotherapies were added to the 
cell lines for 24 hours, as described above. 
Next, the cells were loaded with the fluo-
rescent sensor (0.25 μM of SM-BOD) and 
incubated for a specific period of time. For 
all cell lines, the same inhibitors of the SLP 
enzymes were evaluated: SKI, PDMP, CKI, 
Des, DMAPP-M-NCI, D609, GW, FB1 and 
Myr. More details of the experimental con-
ditions are presented in (Erlich et al., 1999; 
Lippert, Ruoff & Volm, 2008; Solomonov, 
Rumyantsev, Kochergin & Antina, 2014).

After the fluorescence images were 
acquired using a Cytation™ 3 automated 
microscope (Biotek), automatic image anal-
ysis with CellProfiler™ (Broad Institute) 
was implemented to obtain fluorescence 
features (green channel for SM-BOD) with 
single cell resolution and including inten-
sity, texture and morphological features. 
These measurements served as input for the 
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2.3 ODE and FLM models

In order to simulate the transit of SM-
BOD in cancer cells, an ordinary differential 
equations (ODE) model was implemented 
using the fluorescence intensity data ob-
tained from the fluorescence features based 
on the SM-BOD dynamics acquired in the 
green channel. Different kinetics such as the 
law of mass action, Michaelis-Menten or 

Figure 1. (A) Cell viability and (B) SM-BOD kinetics (after exposure 
to chemotherapies) of a breast cancer model of chemosensitivity/
chemoresistance as a proof of principle to evaluate a fluorescent 
sphingolipid analogue as predictor. 
Note: derived from research.

Hill coefficient were used to model each re-
action. The composition of SL was inferred 
using the adjusted model, and that compo-
sition was then used in a new model using 
fuzzy logic (FLM) to create rules that cor-
relate SL contents and cell viability. Rules 
were generated using the ANFIS (Adapta-
tive Neuro-Fuzzy Inference System) algo-
rithm in MATLAB.
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2.4 Simulations and validation 
assays

For MCF-7 breast cancer and CCRF-
CEM leukemic cell lines, we compared the 
inferred SL composition of double perturba-
tions including inhibitor/chemotherapy with 
the experimentally obtained cell viability 
for those treatments. The validation of the 
variations in SL composition was performed 
for the pancreatic cancer cell line using thin 
layer chromatography (TLC), in which cell 
lines were compared for the content of sev-
eral SL included also as standard controls. 
See details in (Lippert et al., 2008).

Analysis and results

Cell viability and SM-BOD kinetics: 
In order to identify the effect of different 
chemotherapies on cell fate of cancer cell 
lines, a viability assay was standardized.

For pancreatic cancer, BxPC-3 cells 
were considerably impacted after 72h with 
a reduced viability (down to 30% compared 
to control conditions) with GMZ. Contrarily, 

a dose-dependent reduction in cell viabil-
ity was determined for both PANC-1 and 
MIAPaCa-2 cells, which suggest that GMZ 
induces an important cytostatic effect on 
the resistant cell lines. The evaluation of 
the MCF-7 human breast cancer cell line 
showed resistance to 3 chemotherapeu-
tic drugs (mafosfamide, gemcitabine and 
methotrexate) but was sensitive to the oth-
er treatments (Figure 1-A). In addition, the 
CCRF-CEM leukemia cell line was sensi-
tive to paclitaxel and vincristine, but this 
cell line was resistant to the remaining six 
chemotherapeutic agents.

SM-BOD was added to cell lines to 
assess changes in cellular fluorescence (e.g. 
Figure 1-B for the breast cancer cell line). 
Intensity and distribution features were ob-
tained from the time-resolved images. We 
then implemented an image analysis pro-
tocol/pipeline in CellProfiler™ for the im-
age segmentation of both breast cancer and 
leukemic cell lines (shown in Figure 2 for 
breast cancer cell line) in order to automate 
features extraction for each cell.

Figure 2. Microscopy-based image analysis pipeline for the subcellular 
segmentation (nuclei/cytoplasm) with the breast cancer cell model. 
Note: derived from research.
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Machine learning approaches: In order 
to identify how different dynamical fluores-
cence features of the SM-BOD can be associ-
ated to chemosensitivity, we evaluated a clas-
sification technique using C4.5 (J48) decision 
tree algorithm. For this, feature reduction was 
performed to select features associated to cat-
egories of resistant or sensitive (Figure 3-A 
for breast cancer cell line). Temporal changes 

were evident (left) and reduction to 51 features 
enabled to classify cells with greater than 95% 
precision (tree not shown), but interestingly 
only three features could classify with a pre-
cision of 73% using the decision tree (Figure 
3-A right). For the CCRF-CEM leukemia cell 
line, a similar reduction was done from 401 to 
41 features and again with greater than 95% 
precision (tree not shown).

Figure 3. The use of a fluorescent SL sensor enables population-based data mining 
to predict chemosensitivity and inference on how the chemotherapy perturbs the 
SLP. (A) Data of intensity/distribution features on the breast cancer model allows the 
construction of decision trees for the prediction of chemosensitivity. (B) Gaussian 
mixture modeling (GMM) of the population of pancreatic cancer cells leads to the 
inference on how gemcitabine (GMZ) perturbs the SLP by the similarity of the 
population-based heterogeneity profiles to known inhibitors of the SLP. 
Note: derived from research.
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vincristine/SKI, mafosfamide/NCI and fi-
nally EC/desipramine, suggesting a large 
number of chemotherapeutic drugs sensed 
in the SLP. In the case of the leukemic cell 
line, clusters obtained were FB-Tem, NCI-
Met, SKI-Pac, and D609-Doxorubicin 
(Doxo). All these relationships suggest that 
those respective paired perturbations were 
sensed similarly by the SLP.

ODE-models: We built a SL metabol-
ic pathway topology based on available data 
and literature. The model was fitted to imag-
ing to estimate parameters and SL-compo-
sition per condition. For pancreatic cancer 
cell lines, the same network topology was 
established (Figure 4-A); nonetheless, the 
SL profile was different for each cell model 
(Figure 4-B). Similar results were obtained 
with leukemia and breast cancer cell lines.

Furthermore, a GMM model was de-
veloped to predict the effect of chemother-
apies on the SLP and to establish a hetero-
geneity profile for each perturbation as a 
fingerprint pattern (e.g. Figure 3-B for pan-
creatic cancer). Finally, a clustering analy-
sis was performed, using Euler distance and 
statistical significance of 0.05 for the evalu-
ation of the similarities of such fingerprints.

According to the GMM analysis, the 
GMZ sensitive pancreatic cancer cell line 
(BxPC-3) showed that D609 inhibitor and 
GMZ produced comparable heterogeneity 
profiles, which suggest that the modifica-
tion upon the SLP of both treatments induce 
a similar response. For the breast cancer cell 
line, the GMM suggested pairs of clusters 
composed of chemotherapy/inhibitor be-
tween FEC/myriocin, methotrexate/myrio-
cin, epirrubicin/PDMP, gemcitabin/SKI, 

Figure 4. The use of fluorescent SL sensor enables the construction of ordinary 
differential equation (ODE) models (topology in A) to estimate the rates of the reactions 
involved in the metabolism of this SL analogue and changes in the relative composition 
of SL species upon perturbations (B). E: experiment, M: model. 
Note: derived from research.
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Hybrid model and experimental val-
idation: The study of the fluorescent-SL 
composition allowed to validate the changes 
in fluorescence intensities between sensitive 
and resistant cells obtained from the SL-sen-
sor metabolism upon chemotherapies.

SL were inferred using the hybrid 
model with differential equations and 
the Gaussian model. For pancreatic can-
cer cell lines, prediction of the increment 
in ceramide (Cer) and glucosylceramide 
(Glu-Cer) content after exposure to GMZ 
was validated using TLC, as shown in 
Figure 5-A.

In the next step we tested MCF-
7 and CCRF-CEM cell lines to evaluate 
the robustness of our approach with more 
chemotherapeutic drugs. For the MCF-7 
breast cancer cell line, cell viability was 
experimentally obtained for single and 
double perturbations of inhibitor and che-
motherapy. However, the cell lines were 
sensitive to the majority of the single per-
turbations. In order to have a better scenar-
io for studying resistance, we developed 
another approach using the CCRF-CEM 
cell line, which showed resistance to 6 of 
the 8 evaluated chemotherapies.

Figure 5. Validation assays for the hybrid mathematical modeling approach of the SL 
sensor as predictor of chemosensitivity allows the formulation of experimentally-testable 
hypothesis. (A) Pancreatic cancer cell line using TLC, in which the prediction of changes 
in SL composition was validated. (B) Predictions of cell viability on a leukemia cell line 
after double chemotherapeutic treatments were validated experimentally. 
Note: derived from research.
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Discussion

Considering the highlight functions 
of the SLP in cell processes related to sig-
naling, metabolism and cell death/survival, 
the use of SL sensors in cancer can be used 
to measure chemosensitivity (Lippert et al., 
2008; Quirós-Fernandez, I; Molina-Mo-
ra, JA, Kop-Monteo, M; Salas-Hidalgo. E; 
Mora-Rodriguez, 2018). In this context, 
targeting of the SLP is a potential approach 
to overcome chemotherapy resistance (Tru-
man, García-Barros, Obeid & Hannun, 
2014; Van Meer et al., 2003). In this con-
text, SM-BOD has been widely used in sev-
eral reports to measure SL metabolism in 
cells (Erlich et al., 1999; Mora et al., 2010; 
Solomonov et al., 2014).

Here we employed different exper-
iments and mathematical models for de-
scribing the effects of chemotherapy on 
SLP and cell fate. We performed a pertur-
bation-specific profile of cell heterogene-
ity for clustering the studied perturbations. 
GMM analysis led to discriminate differ-
ent classes of perturbations based on pos-
sible relationships chemotherapy-inhibitor 
which can modulate the effects on the SLP 
(Molina-Mora et al., 2018; Molina-Mora 
& Mora-Rodriguez, 2016; Slack, Martinez, 

Wu & Altschuler, 2008). In the case of the 
pancreatic cancer cell lines, according to 
clustering analysis, the GMM indicates that 
gemcitabine and D609 have similar effects 
on the SLP. Clustering analysis of the breast 
cancer cell line data found 7 chemothera-
pies which were mapped to known pertur-
bations in the SLP, meanwhile for the leuke-
mic cell line, 4 chemotherapies were sensed 
in the SLP. All these relationships suggest 
that those chemotherapies perturb the SLP 
in a similar way. This is particularly import-
ant in cancer biology, since these results can 
identify specific responses to drugs, in part 
due to the heterogeneity.

Remarkably, these results have not 
been reported before. Indeed, there are a 
limited amount of scientific studies related 
to how perturbations can affect SLP (Bon-
houre et al., 2006; Hannun & Obeid, 2008; 
Lacour et al., 2004; Machala et al., 2019). 
This information indicates that the chemo-
therapy response is dependent on the cancer 
type (tumor or cell line) and specific analy-
ses are required.

Furthermore, some chemotherapies 
were not sensed in the SLP for neither 
breast cancer nor leukemia cell lines, which 
may not be related to any of the SL inhibi-
tors (Bensimon, Heck & Aebersold, 2012).

To describe the metabolism of SM-
BOD in cell lines, total fluorescence data of 
perturbations were used for fitting an ODE 
model on a systems biology approach. In 
this model, we assumed that the addition 
of SM-BOD promotes the internalization 
and remains mostly in the plasma mem-
brane (Koval & Pagano, 1991). The transit 
of SM-BOD for each cell line is simulated 
with the mathematical approach. The model 
was built using ODEs and it describes the 
SL composition for each cell line, inhibitory 

Finally, the FLM was used to correlate 
SL composition to cell viability. Double 
perturbations were evaluated to predict cell 
viability (six combinations). Predictions 
showed an outstanding performance when 
results were compared to the experimental 
validation assay (Figure 5-B). Taken to-
gether, these findings indicate that the fluo-
rescent sphingolipid analogues can be used 
as biosensors of chemosensitivity to iden-
tify chemotherapeutic regimes overcoming 
drug resistance.
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perturbations and single or double perturba-
tions with chemotherapeutic treatments.

For pancreatic cancer cell lines, pre-
dictions of the mathematical model were 
validated by TLC, showing an increment 
in the ceramide content in the BxPC-3 
sensitive cell line when exposed to gem-
citabine. For the MCF-7 breast cancer cell 
line, double perturbations (inhibitor and 
chemotherapy) were tested. More chemo-
therapeutic treatments were included, and 
the SL composition was inferred by ODE/
GMM models. Different SL compositions 
were achieved for different chemosensitiv-
ity levels. To correlate the SL profile to cell 
viability and to infer rules, we implemented 
the FLM as is common for data analysis in 
biological studies (Al Daoud & Al-Daoud, 
2010; Bosl, 2007; Torshabi, Riboldi, Foola-
di, Mosalla & Baroni, 2013). Thus, the pre-
diction of viability for double perturbations 
with chemotherapy were inferred from 
ODE/GMM/FLM models. A viability assay 
confirmed that the hybrid approach is able 
to predict cell viability when cells are ex-
posed to double perturbations.

The hybrid models inferred that dif-
ferent chemotherapies triggered different 
mechanisms of cellular stress on the SLP, 
and the subsequent signaling is responsi-
ble for a specific SL balance which finally 
decides cell fate, as has been previously 
demonstrated by others (Chai et al., 2011; 
Molino, Tate, McKillop & Medin, 2017; 
Tepper et al., 2000).

Conclusions

Taking all together, our complex ap-
proach to study SL using SM-BOD was 
able to recognize particular features in cells, 
which can be useful to study cancer. As it 
was demonstrated, the balance in the SLP 

can be used as a biosensor of cancer che-
mosensitivity. This proof of principle was 
demonstrated using not only different ex-
perimental data derived from fluorescence 
microscopy, imaging and mathematical 
modeling, but also including an experi-
mental validation (TLC and cell viability 
assays). At the clinical setting, these find-
ings are interesting because they can be 
potentially implemented in personalized 
strategies to model chemosensitivity and to 
enhance therapeutic decisions in benefit of 
the patients. Further analyses are required 
to make this possible, but the results pre-
sented here pave the way for a translation-
al research on SL-based chemosensitivy in 
cancer patients.
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